Part Number Hot Search : 
MAZX000 CXP88460 FDP047AN 39861 89C420 BU4506DZ TC2202F K10101WA
Product Description
Full Text Search
 

To Download BC847BDW1T3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2007 november, 2007 - rev. 5 1 publication order number: bc846bdw1t1/d bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 dual general purpose transistors npn duals these transistors are designed for general purpose amplifier applications. they are housed in the sot-363/sc-88 which is designed for low power surface mount applications. features ? pb-free packages are available maximum ratings rating symbol bc846 bc847 bc848 unit collector-emitter voltage v ceo 65 45 30 v collector-base voltage v cbo 80 50 30 v emitter-base voltage v ebo 6.0 6.0 5.0 v collector current - continuous i c 100 100 100 madc stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above the recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may affect device reliability. thermal characteristics characteristic symbol max unit total device dissipation per device fr-5 board (note 1) t a = 25 c derate above 25 c p d 380 250 3.0 mw mw/ c thermal resistance, junction to ambient r  ja 328 c/w junction and storage temperature range t j , t stg -55 to +150 c 1. fr-5 = 1.0 x 0.75 x 0.062 in sot-363 case 419b style 1 marking diagram 1x m   q 1 (1) (2) (3) (4) (5) (6) q 2 1 6 1x = specific device code x = b, f, g, l m = date code  = pb-free package http://onsemi.com see detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. ordering information (note: microdot may be in either location)
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 2 electrical characteristics (t a = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics collector-emitter breakdown voltage (i c = 10 ma) bc846 series bc847 series bc848 series v (br)ceo 65 45 30 - - - - - - v collector-emitter breakdown voltage (i c = 10  a, v eb = 0) bc846 series bc847 series bc848 series v (br)ces 80 50 30 - - - - - - v collector-base breakdown voltage (i c = 10  a) bc846 series bc847 series bc848 series v (br)cbo 80 50 30 - - - - - - v emitter-base breakdown voltage (i e = 1.0  a) bc846 series bc847 series bc848 series v (br)ebo 6.0 6.0 5.0 - - - - - - v collector cutoff current (v cb = 30 v) (v cb = 30 v, t a = 150 c) i cbo - - - - 15 5.0 na  a on characteristics dc current gain (i c = 10  a, v ce = 5.0 v) bc846b, bc847b, bc847c, bc848c (i c = 2.0 ma, v ce = 5.0 v) bc846b, bc847b, bc847c, bc848c h fe - - 200 420 150 270 290 520 - - 450 800 - collector-emitter saturation voltage (i c = 10 ma, i b = 0.5 ma) collector-emitter saturation voltage (i c = 100 ma, i b = 5.0 ma) v ce(sat) - - - - 0.25 0.6 v base-emitter saturation voltage (i c = 10 ma, i b = 0.5 ma) base-emitter saturation voltage (i c = 100 ma, i b = 5.0 ma) v be(sat) - - 0.7 0.9 - - v base-emitter voltage (i c = 2.0 ma, v ce = 5.0 v) base-emitter voltage (i c = 10 ma, v ce = 5.0 v) v be(on) 580 - 660 - 700 770 mv small-signal characteristics current-gain - bandwidth product (i c = 10 ma, v ce = 5.0 vdc, f = 100 mhz) f t 100 - - mhz output capacitance (v cb = 10 v, f = 1.0 mhz) c obo - - 4.5 pf noise figure (i c = 0.2 ma, v ce = 5.0 vdc, r s = 2.0 k  ,f = 1.0 khz, bw = 200 hz) nf - - 10 db
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 3 typical characteristics - bc847 series & bc848 series figure 1. normalized dc current gain i c , collector current (madc) 2.0 figure 2. saturation and on voltages i c , collector current (madc) 0.2 0.5 1.0 10 20 50 0.2 100 figure 3. collector saturation region i b , base current (ma) figure 4. base-emitter temperature coefficient i c , collector current (ma) 2.0 5.0 200 0.6 0.7 0.8 0.9 1.0 0.5 0 0.2 0.4 0.1 0.3 1.6 1.2 2.0 2.8 2.4 1.2 1.6 2.0 0.02 1.0 10 0 20 0.1 0.4 0.8 h fe , normalized dc current gain v, voltage (volts) v ce , collector-emitter voltage (v) vb , temperature coefficient (mv/ c) 1.5 1.0 0.8 0.6 0.4 0.3 0.2 0.5 1.0 10 20 50 2.0 100 70 30 7.0 5.0 3.0 0.7 0.3 0.1 0.2 1.0 10 100 t a = 25 c v be(sat) @ i c /i b = 10 v ce(sat) @ i c /i b = 10 v be(on) @ v ce = 10 v v ce = 10 v t a = 25 c -55 c to +125 c t a = 25 c i c = 50 ma i c = 100 ma i c = 200 ma i c = 20 ma i c = 10 ma 1.0 figure 5. capacitances v r , reverse voltage (volts) 10 figure 6. current-gain - bandwidth product i c , collector current (madc) 0.4 0.6 1.0 10 20 1.0 2.0 6.0 40 80 100 200 300 400 60 20 40 30 7.0 5.0 3.0 2.0 0.7 1.0 10 20 2.0 50 30 7.0 5.0 3.0 0.5 v ce = 10 v t a = 25 c c, capacitance (pf) f, current-gain - bandwidth product (mhz) t 0.8 4.0 8.0 t a = 25 c c ob c ib
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 4 typical characteristics - bc846 series figure 7. normalized dc current gain i c , collector current (ma) figure 8. on voltage i c , collector current (ma) 0.8 1.0 0.6 0.2 0.4 1.0 2.0 0.1 1.0 10 100 0.2 0.2 0.5 0.2 1.0 10 200 t a = 25 c v be(sat) @ i c /i b = 10 v ce(sat) @ i c /i b = 10 v be @ v ce = 5.0 v figure 9. collector saturation region i b , base current (ma) figure 10. base-emitter temperature coefficient i c , collector current (ma) -1.0 1.2 1.6 2.0 0.02 1.0 10 0 20 0.1 0.4 0.8 v ce , collector-emitter voltage (volts) vb , temperature coefficient (mv/ c) 0.2 2.0 10 200 1.0 t a = 25 c 200 ma 50 ma i c = 10 ma h fe , dc current gain (normalized) v, voltage (volts) v ce = 5 v t a = 25 c 0 0.5 2.0 5.0 20 50 100 0.05 0.2 0.5 2.0 5.0 100 ma 20 ma -1.4 -1.8 -2.2 -2.6 -3.0 0.5 5.0 20 50 100 -55 c to 125 c  vb for v be figure 11. capacitance v r , reverse voltage (volts) 40 figure 12. current-gain - bandwidth product i c , collector current (ma) 0.1 0.2 1.0 50 2.0 2.0 10 100 100 200 500 50 20 20 10 6.0 4.0 1.0 10 50 100 5.0 v ce = 5 v t a = 25 c c, capacitance (pf) f, current-gain - bandwidth product t 0.5 5.0 20 t a = 25 c c ob c ib
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 5 figure 13. thermal response t, time (ms) 1.0 r(t), transient thermal 1.0 0 resistance (normalized) 0.1 0.01 0.001 10 100 1.0k 10k 100k figure 14. active region safe operating area v ce , collector-emitter voltage (v) -200 -1.0 i c , collector current (ma) t a = 25 c d = 0.5 0.2 0.1 0.05 single pulse bonding wire limit thermal limit second breakdown limit 3 ms t j = 25 c z  ja (t) = r(t) r  ja r  ja = 328  c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r  jc (t) t 1 t 2 p (pk) duty cycle, d = t 1 /t 2 -100 -50 -10 -5.0 -2.0 -5.0 -10 -30 -45 -65 -100 1 s bc558 bc557 bc556 the safe operating area curves indicate i c -v ce limits of the transistor that must be observed for reliable operation. collector load lines for specific circuits must fall below the limits indicated by the applicable curve. the data of figure 14 is based upon t j(pk) = 150 c; t c or t a is variable depending upon conditions. pulse curves are valid for duty cycles to 10% provided t j(pk) 150 c. t j(pk) may be calculated from the data in figure13. at high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown. 1.0m 0.02 0.01
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 6 ordering information device markings package shipping ? bc846bdw1t1 1b sot-363 3000 units/reel bc846bdw1t1g sot-363 (pb-free) bc847bdw1t1 1f sot-363 3000 units/reel bc847bdw1t1g sot-363 (pb-free) BC847BDW1T3 1f sot-363 10000 units/reel BC847BDW1T3g sot-363 (pb-free) bc847cdw1t1 1g sot-363 3000 units/reel bc847cdw1t1g sot-363 (pb-free) bc848cdw1t1 1l sot-363 3000 units/reel bc848cdw1t1g sot-363 (pb-free) ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specifications brochure, brd8011/d.
bc846bdw1t1, bc847bdw1t1, bc848cdw1t1 http://onsemi.com 7 package dimensions sc-88 (sc70-6/sot-363) case 419b-02 issue w style 1: pin 1. emitter 2 2. base 2 3. collector 1 4. emitter 1 5. base 1 6. collector 2 scale 20:1 0.50 0.0197 1.9 0.0748 0.65 0.025 0.65 0.025 0.40 0.0157  mm inches  *for additional information on our pb-free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. 419b-01 obsolete, new standard 419b-02. e 0.2 (0.008) mm 123 d e a1 a a3 c l 654 -e- b 6 pl dim min nom max millimeters a 0.80 0.95 1.10 a1 0.00 0.05 0.10 a3 b 0.10 0.21 0.30 c 0.10 0.14 0.25 d 1.80 2.00 2.20 0.031 0.037 0.043 0.000 0.002 0.004 0.004 0.008 0.012 0.004 0.005 0.010 0.070 0.078 0.086 min nom max inches 0.20 ref 0.008 ref h e h e e 1.15 1.25 1.35 e 0.65 bsc l 0.10 0.20 0.30 2.00 2.10 2.20 0.045 0.049 0.053 0.026 bsc 0.004 0.008 0.012 0.078 0.082 0.086 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. typical parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including typicals must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. bc846bdw1t1/d publication ordering information n. american technical support : 800-282-9855 toll free ?usa/canada europe, middle east and africa technical support: ?phone: 421 33 790 2910 japan customer focus center ?phone: 81-3-5773-3850 literature fulfillment : ?literature distribution center for on semiconductor ?p.o. box 5163, denver, colorado 80217 usa ? phone : 303-675-2175 or 800-344-3860 toll free usa/canada ? fax : 303-675-2176 or 800-344-3867 toll free usa/canada ? email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of BC847BDW1T3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X